PPC2012, KIAS, Nov. 5-9, 2012

Higgs at Seesaw Type II

Eung Jin Chun

Introduction

- An SU(2) doublet boson (Y=1/2) is responsible for the masses of quarks and charged leptons as well as for the electroweak symmetry breaking. July 4, 2012!
- What about neutrino masses? Maybe due to an "SU(2) triplet boson (Y=1)", $\Delta = (\Delta^{++}, \Delta^{+}, \Delta^{0})$:Type II Seesaw
- Main search channel $\Delta^{++} \rightarrow I^+ I^+$; and others...
- Study the properties of the SM 125 GeV Higgs.
- Consider EWPD, perturbativity and vacuum stability to constrain the type II seesaw sector, and analyze its impact on the Higgs-to-diphoton rate.

EJC, Lee, Sharma, 1209.11303

Type II Seesaw

Introduce Higgs doublet (Y=1/2) & triplet (Y=1):

$$\Phi = (\Phi^+, \Phi^0) \qquad \Delta = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$$

Triplet VEV generates neutrino mass matrix:

$$\mathcal{L}_{Y} = f_{\alpha\beta} L_{\alpha}^{T} C i \tau_{2} \Delta L_{\beta} + \frac{1}{\sqrt{2}} \mu \Phi^{T} i \tau_{2} \Delta \Phi + h.c.$$
$$v_{\Delta} = \mu \frac{v_{\Phi}^{2}}{M_{\Delta}^{2}} \Rightarrow \mathbf{m}_{\alpha\beta}^{\nu} = \mathbf{f}_{\alpha\beta} \mathbf{v}_{\Delta} \iff f_{\alpha\beta} \frac{v_{\Delta}}{v_{\Phi}} \sim 10^{-12}$$

- ▶ ρ parameter constraint on $\xi = \mathbf{v}_{\Delta}/\mathbf{v}_{\Phi}$: $\rho = (|+2\xi^2)/(|+4\xi^2) \rightarrow \xi < 0.03$
- We will work in the limit of $\xi << 0.01$, neglecting the tree-level $\Delta \rho$ contribution.

Higgs sector

• Higgs potential of type II seesaw: $V(\Phi, \Delta) = m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) \\ + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 [\operatorname{Tr}(\Delta^{\dagger} \Delta)]^2 + 2\lambda_3 \operatorname{Det}(\Delta^{\dagger} \Delta) \\ + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 (\Phi^{\dagger} \tau_i \Phi) \operatorname{Tr}(\Delta^{\dagger} \tau_i \Delta) \\ + \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta \Phi + h.c.$

Five Higgs boson mass eigenstates:

$$\begin{array}{c} \Delta^{++}, \Delta^{+}, \Delta^{0} \\ \Phi^{+}, \Phi^{0} \end{array} \qquad \Longrightarrow \qquad h^{0}, H^{0}, A^{0}, H^{+}, H^{++} \end{array}$$

• Doublet-triplet mixing controlled by $\xi = v_{\Delta}/v_{\Phi}$:

$$\begin{split} \phi_I^0 &= G^0 - 2\xi A^0 & \phi^+ = G^+ + \sqrt{2}\xi H^+ & \phi_R^0 = h^0 - a\xi H^0 \\ \Delta_I^0 &= A^0 + 2\xi G^0 & \Delta^+ = H^+ - \sqrt{2}\xi G^+ & \Delta_R^0 = H^0 + a\xi h^0 \end{split}$$

Higgs spectrum

Mass gap among triplet components:

EJC, Lee, Park, 0304069

$$M_{H^{\pm\pm}}^{2} = M^{2} + 2\frac{\lambda_{4} - \lambda_{5}}{g^{2}}M_{W}^{2}$$

$$M_{H^{\pm}}^{2} = M_{H^{\pm\pm}}^{2} + 2\frac{\lambda_{5}}{g^{2}}M_{W}^{2}$$

$$\Delta M^{2} = 2\frac{\lambda_{5}}{g^{2}}M_{W}^{2}$$

$$M_{H^{0},A^{0}}^{2} = M_{H^{\pm}}^{2} + 2\frac{\lambda_{5}}{g^{2}}M_{W}^{2}.$$

Mass gap between H⁰ & A⁰:

$$\mathcal{L}_{\not{\Delta}} = \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta^{\dagger} \Phi + h.c. \Rightarrow -\mu v_{\Phi} h^0 H^0$$

$$v_{\Delta} = \frac{\mu v_{\Phi}^2}{\sqrt{2}M_{H^0}^2} \qquad \delta M_{HA} \approx 2M_{H^0} \frac{v_{\Delta}^2}{v_{\Phi}^2} \frac{M_{H^0}^2}{M_{H^0}^2 - m_{h^0}^2}$$

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

Higgs triplet decay channels

Two mass hierarchies:

 $M_{H^{++}} < M_{H^+} < M_{H^0/A^0}$ if $\lambda_5 > 0$

 $M_{H^{++}} > M_{H^+} > M_{H^0/A^0}$ if $\lambda_5 < 0$

• Gauge decays for non-vanishing ΔM (λ_5):

$$H^0/A^0 \to H^{\pm}W^* \to H^{\pm\pm}W^*W^*$$
$$H^{++} \to H^{\pm}W^* \to H^0/A^0 W^*W^*$$

$$\begin{array}{ccc} H^{++} \to W^+W^+; \ H^+ \to t\bar{b}; & H^0/A^0 \to t\bar{t}, \ b\bar{b} \\ \to ZW, hW & \to ZZ, hh/Zh \end{array} \zeta \Longrightarrow \xi \equiv \frac{v_\Delta}{v_\Phi} \end{array}$$

 $\langle \Box \Delta M(\lambda_5) \rangle$

Collider search

- Only $H^{++} H^{--} \rightarrow I^+ I^+ I^- I^-$ so far.
- Neutrino mass pattern can be determined by measuring BR $(\Delta^{++} \xrightarrow{f_{\alpha\beta}} l_{\alpha}^+ l_{\beta}^+)$! EJC, Lee, Park, 0304069
- Updated neutrino mass matrix after θ_{13} (no CP phase):

Br $(\%)$	ee	$e\mu$	e au	$\mu\mu$	μau	au au
NH	0.62	5.11	0.51	26.8	35.6	31.4
IH1	47.1	1.27	1.35	11.7	23.7	14.9

EJC, Sharma, 1206.6278

Benchmark point	ee	еµ	eτ	μμ	μτ	ττ	I
BP1	0	0.01	0.01	0.30	0.38	0.30	Ī
BP2	1/2	0	0	1/8	1/4	1/8	
BP3	1/3	0	0	1/3	0	1/3	
BP4	1/6	1/6	1/6	1/6	1/6	1/6	C

CMS, 1207.2666

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

LHC7 limit

• CMS looks for $pp \rightarrow H^{++} H^- \rightarrow I^+ I^+ I^- \nu$ & $pp \rightarrow H^{++} H^{--} \rightarrow I^+ I^+ I^- I^-$.

CMS, 1207.2666 ATLAS, 1210.5070

• Assuming 100% leptonic decay & $\Delta M=0$.

Benchmark point	Combined 95% CL limit [GeV]	95% CL limit	
		for pair production only [GeV]	
$\mathcal{B}(\Phi^{++} \to e^+ e^+) = 100\%$	444	382	
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \mu^+) = 100\%$	453	391	
$\mathcal{B}(\Phi^{++} \rightarrow e^+ \tau^+) = 100\%$	373	293	
$\mathcal{B}(\Phi^{++} \to \mu^+ \mu^+) = 100\%$	459	395	
$\mathcal{B}(\Phi^{++} \to \mu^+ \tau^+) = 100\%$	375	300	
$\mathcal{B}(\Phi^{++} \to \tau^+ \tau^+) = 100\%$	204	169	
BP1	383	333	
BP2	408	359	
BP3	403	355	
BP4	400	353	

LHC7 limit

Normal hierarchy: BP1 CMS $\sqrt{s} = 7$ TeV, $\int \mathcal{L} dt = 4.9$ fb⁻¹ Expected limit (pair-production) 10^{-10} Observed limit (pair-production) Pair-production cross section <mark>අ</mark> 10 $\sigma \cdot \mathcal{B}^2$ 10^{-3} 150200250300 350500400450Mass of $\Phi^{\pm\pm}$ [GeV] Br < 12% $M_{H^{++}} < 100 \text{GeV}$

Search for other channels?

• If ξ > f, Br(II) < 100% weakens the mass limit. Search for other channels may be necessary:

 $H^{++} \rightarrow W^+W^+; H^+ \rightarrow W^+Z, tb; H^0/A^0 \rightarrow ZZ, hh/Zh, tt$

- Missing triplet if $\lambda_5 < 0$ and $f >> \xi$: $H^{++} \rightarrow H^+ W^* \rightarrow H^0/A^0 W^* W^* \rightarrow \nu \nu W^* W^*$.
- No mass limit yet in these two cases.
- We will take the doubly charged mass as low as 100 GeV.

EWPD

Triplet contribution to S,T & U:

Lavoura, Li, 9309262

Most recent STU fit:

 $S_{\text{best fit}} = 0.03$, $\sigma_S = 0.10$ Baak, et.al., 1209.2716 $T_{\text{best fit}} = 0.05$, $\sigma_T = 0.12$ $U_{\text{best fit}} = 0.03$, $\sigma_U = 0.10$

 $\rho_{ST} = 0.89, \quad \rho_{SU} = -0.54, \quad \rho_{TU} = -0.83$

It strongly constrains the mass splitting.

$$\begin{pmatrix} \Delta S \\ \Delta T \\ \Delta U \end{pmatrix}^{T} \begin{pmatrix} \sigma_{S}\sigma_{S} & \sigma_{S}\sigma_{T}\rho_{ST} & \sigma_{S}\sigma_{U}\rho_{SU} \\ \sigma_{S}\sigma_{T}\rho_{ST} & \sigma_{T}\sigma_{T} & \sigma_{T}\sigma_{U}\rho_{TU} \\ \sigma_{U}\sigma_{S}\rho_{US} & \sigma_{U}\sigma_{T}\rho_{TU} & \sigma_{U}\sigma_{U} \end{pmatrix}^{-1} \begin{pmatrix} \Delta S \\ \Delta T \\ \Delta U \end{pmatrix}$$

$$< -2\ln(1 - CL)$$

EWPD

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

Constrained λ_5

- EWPD limit $|\Delta M| < \sim 40$ GeV for $\xi << 10^{-2}$.
- Strong constraints on λ_5 for small triplet mass:

 $\lambda_5 = (-0.1, 0.4), (-0.2, 0.6), (-0.35, 0.7)$

 $M_{H^{++}} = 100, 150, \text{ and } 200 \text{ GeV},$

Vacuum stability & perturbativity

Higgs sector of type II seesaw:

$$V(\Phi, \Delta) = m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 [\operatorname{Tr}(\Delta^{\dagger} \Delta)]^2 + 2\lambda_3 \operatorname{Det}(\Delta^{\dagger} \Delta) + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 (\Phi^{\dagger} \tau_i \Phi) \operatorname{Tr}(\Delta^{\dagger} \tau_i \Delta) + \frac{1}{\sqrt{2}} \mu \Phi^T i \tau_2 \Delta \Phi + h.c.$$

- Vacuum stability of the SM Higgs changes due to its couplings to the Higgs triplet.
- Triplet self coupling (λ_2) tends to diverge rapidly.
- Strong constraints on $\lambda_{2,3,4,5}$.
- Take $\lambda_1 = 0.13$ and $\mu \ll v_{\Phi}$.

Vacuum stability & perturbativity

Demand the absolute vacuum stability condition.

- $\lambda_1 > 0$, Arhrib, et.al., 1105.1925
- $\lambda_2 > 0$,

•
$$\lambda_2 + \frac{1}{2}\lambda_3 > 0$$

•
$$\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1 \lambda_2} > 0$$
,

•
$$\lambda_4 \pm \lambda_5 + 2\sqrt{\lambda_1(\lambda_2 + \frac{1}{2}\lambda_3)} > 0.$$

• Perturbativity: $|\lambda_i| \leq \sqrt{4\pi}$.

Vacuum stability & perturbativity

Use I-loop RGE:

Chao, Zhang, 0611323 Schmidt, 07053841

$$\begin{split} 16\pi^2 \frac{d\lambda_1}{dt} &= 24\lambda_1^2 + \lambda_1(-9g_2^2 - 3g'^2 + 12y_t^2) + \frac{3}{4}g_2^4 + \frac{3}{8}(g'^2 + g_2^2)^2 \\ &- \frac{6y_t^4 + 3\lambda_4^2 + 2\lambda_5^2}{4t} \\ = \lambda_2(-12g'^2 - 24g_2^2) + 6g'^4 + 9g_2^4 + 12g'^2g_2^2 + 28\lambda_2^2 \\ &+ \frac{8\lambda_2\lambda_3 + 4\lambda_3^2 + 2\lambda_4^2 + 2\lambda_5^2}{4t} \\ 16\pi^2 \frac{d\lambda_3}{dt} &= \lambda_3(-12g'^2 - 24g_2^2) + 6g_2^4 - 24g'^2g_2^2 + 6\lambda_3^2 \\ &+ 24\lambda_2\lambda_3 - 4\lambda_5^2 \\ 16\pi^2 \frac{d\lambda_4}{dt} &= \lambda_4(-\frac{15}{2}g'^2 - \frac{33}{2}g_2^2) + \frac{9}{5}g'^4 + 6g_2^4 + \lambda_4(12\lambda_1 \\ &+ \frac{16\lambda_2 + 4\lambda_3 + 4\lambda_4 + 6y_t^2) + 8\lambda_5^2}{4t} \\ 16\pi^2 \frac{d\lambda_5}{dt} &= \lambda_4(-\frac{15}{2}g'^2 - \frac{33}{2}g_2^2) + 6g'^2g_2^2 + \lambda_5(4\lambda_1 + 4\lambda_2 \\ &- 4\lambda_3 + 8\lambda_4 + 6y_t^2), \end{split}$$

RGE running

An example

Cut-off scale 10¹⁹ GeV

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

Cut-off scale 10¹⁰ GeV

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

Cut-off scale 10⁵ GeV

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

Allowed ranges

	$10^5 { m ~GeV}$	$10^{10} {\rm ~GeV}$	$10^{19} { m GeV}$
λ_2	(0,1)	(0, 0.5)	(0, 0.25)
λ_3	(-2.0, 2.4)	(-1.0, 1.25)	(-0.55, 0.62)
λ_4	(-0.5, 1.7)	(-0.1, 0.9)	(0, 0.5)
λ_5	(-1.5, 1.5)	(-0.7, 0.7)	(-0.4, 0.4)

Higgs-to-diphoton

- I-loop process sensitive to New Physics.
- A large deviation in the current data.
- Its precision data is important to constrain NP.

Higgs-to-diphoton

▶ H⁺⁺ & H⁺ contribution:

•
$$g_{H^+H^+}^h = \frac{\lambda_4}{2} \frac{v_0^2}{M_{H^+}^2}$$
,
• $g_{H^{++}H^{++}}^h = \frac{\lambda_4 - \lambda_5}{2} \frac{v_0^2}{M_{H^+}^2}$,

Arhrib, et.al., 1112.5453 Kanemura, Yagyu, 1201.6287 Akeryod, Moretti, 1206.0535

Higgs-to-diphoton

- Sizable H⁺⁺/H⁺ contribution if light enough (< 250 GeV).</p>
- CMS limit does not apply if $BR(H^{++} \rightarrow I^+I^+)$ is not 100%.
- Calculate possible deviation by Higgs triplet combined with conditions from EWPD, vacuum stability and perturbativity.

 $R_{\gamma\gamma} = \Gamma(h \to \gamma\gamma) / \Gamma(h \to \gamma\gamma)_{\rm SM}$

 $m_{H^{++}} = 100 \text{GeV}$

 $m_{H^{++}} = 150 \text{GeV}$

 $m_{H^{++}} = 200 \text{GeV}$

Combined results for 10¹⁹ GeV

Combined results for 10¹⁰ GeV

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

Combined results for 10⁵ GeV

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC

Conclusion

• EWPD constrains tightly the triplet mass splitting: $|\Delta M| < 40$ GeV.

- Vacuum stability and perturbativity put strong bounds on the Higgs couplings, roughly $\lambda_i < 1$.
- Higgs-to-diphoton rate can be enhanced up to 100% ~ 50% for the triplet mass 100 GeV depending on the cutoff scale.
- The Higgs precision data will severely constrain the Higgs triplet parameter space.

Thank you

Higgs at Seesaw Type II EJChun@KIAS 2012-11-08 PPC